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Abstract. An algorithm to simulate 3-D high compressible flows using the finite element
method and a multi-time-step integration technique with subcycles is presented in this work.
An explicit two-step Taylor-Galerkin scheme is adopted to integrate in time continuum
equations. When explicit schemes are used, the time steps must satisfy some stability
conditions. If the smallest critical time-step is adopted uniformely for the whole domain, the
integration scheme may consume a large amount of CPU time. Multi-time-step integration
techniques are very suitable in these cases because elements and nodes are separated into
several groups and a different time-step is assigned to each group. In this way, each group of
elements is integrated with a time interval wich is much closer to the critical time steps of the
elements in the group. This results in great computational savings, mainly when elements size
and properties are very different, leading to significative differences of the local critical time
steps values. Multi-time-steps integration techniques are also very useful in transient
problems, taking into account that at the end of each subcycle, values of the unknowns at the
same time level are obtained. The multi-time-step algorithm is applied to analyze the
supersonic flow (Mach=8,5) past a sphere immersed in a non viscous flow, and results and
computational performance are compared with those obtained when a uniformly time-step is
used over the whole domain.
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1.       INTRODUCTION

Multi-time-step integration techniques are very suitable aproaches when explicit schemes
are involved in the numerical simulation of engineering problems. This is accomplished by
separating the elements and nodes into groups and assigning a different time-step to each
group. In this way, each group of elements is integrated with a time interval which is much
closer to the critical time steps of the elements in the group. This results in great computational



savings, mainly when elements size and properties are very different, leading to significative
differences of the local critical time steps values.
     A mixed time integration technique was first introduced by Belytschko and Mullen (1976)
where they presented an “implicit-explicit” method for the second order equations which arise
from the semidiscretization of the continuum equation and using a nodal partition. Hughes and
Liu (1978) later introduced an “implicit-explicit” method which divided the mesh into groups
of elements rather than nodes, using an element partition. An “explicit-explicit” subcycling
procedure was then introduced by Belytschko, Yen and Mullen (1979), using nodal partition,
where the groups of nodes were integrated explicitly with different time steps for each group.
     Mixed time integration procedures for first order semidiscretization have also been
proposed by Belytschko et al. (1985) and Smolinski et al. (1988). In all these previous
methods, integer time-steps ratios are required, restricting sometimes the division of the mesh
into more then just a few groups. Although Neal and Belytschko (1989) have relaxed the
constrain of requiring integer time step ratios, (applying an “explicit-explicit” subcycling
technique for structural dynamic systems), this last alternative may be convenient to vectorize
and to parallelize the computer program, as indicated by Belytschko and Gilbertsen (1992).
     A multi-time-step integration technique, similar to that used by Belytschko and Gilbertsen
(1992) for structural dynamics problems, was implemented in this work to analyze 3-D high
compressible flows using an explicit Taylor-Galerkin scheme with tetrahedral finite elements.
This scheme was applied to analyze the supersonic flow past a sphere immersed in a non
viscous fluid.

2.       THE EXPLICIT TAYLOR-GALERKIN SCHEME

    The equations expressing mass, momentum and energy conservation may be written in a
compact form as
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where vi is the velocity component in the direction of the coordinate xi, ρ is the specific mass, p
is the thermodynamic pressure, σij are the components of the deviatoric stress tensor, T is the
temperature, ε is the total specific energy and kij are the components of the conductivity tensor;
vector V contains the conservation or the field variables and Fi are the components of the flux
variables (FiA contains the advective terms and FiD the viscous terms). Finally, δij is the
Kronecker delta. Equation (1) is supplemented by the equation of state for an ideal gas and by
the relationship between the temperature and the total and the kinetic energies. Initial and
boundary conditions must be added to these equations in order to define uniquely the problem.



   In the Taylor-Galerkin scheme, conservation equations are expanded in time by Taylor
series, and after, space discretization is accomplised by the classical Bubnov-Galerkin scheme.
A two-step method is used, as indicated by Zienkiewicz et al. (1988); this aproach can be
interpreted as the finite element version of the Lax-Wendroff scheme (Richtmeyer & Morton,
1967) used in finite differences.
    In the first step, corresponding to the time interval [tn, tn+1/2], the unknown vector V at
t=tn+1/2 is expanded in Taylor series, and it is obtained the following expression:
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Using a linear shape function Nj associated with node j to interpolate Vn, a constant shape
function associated with element E to interpolate Vn+1/2 and applying the classical Galerkin
weighted residual method, it is obtained the following equation:
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where E
n+1 2/Ω  is the element volume and E

n+1/2V  is the unknown vector of element E at t=tn+1/2.
    In the second step, the unknown vector at t=tn+1 is expanded in Taylor series, and it is
obtained the following expression:
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Using again the same shape functions, and applying the Bubnov-Galerkin method, the
following equation is obtained for the second step:
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where E
n+1 2/Γ  is the boundary of the element domain E

n+1 2/Ω  and li is the cosine of the angle

formed by the outward normal axis to E
n+1 2/Γ  with the positive direction of the reference axis xi.

Index B is referred to values at the boundary of the element domain.
   In compact form, equations (4) and (6) may be written, respectively, as
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In (8), the consistent mass matrix M 1+n
E c

 is substituted by the lumped mass matrix M 1+n
E L

 and

then this equation is solved iteratively with an explicit scheme. The proposed scheme is
conditionally stable, and the local stability condition for non viscous flows is given by
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where hE is a characteristic dimension of element E, c is the velocity of sound propagation and
β is a safety factor.

In order to stabilize numerically the solution, specially in the presence of strong shocks, it
is necessary to add numerical damping to the flow solver. In this work the viscosity model as
given by Peraire et al. (1988) is adopted. An artificial viscosity is added explicitly to the non-
smoothed solution, as follows
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where s
n+1V  and n+1V  are the smoothed and non-smoothed solution at t=tn+1 respectively.

L
n+1M  is the assembled lumped mass matrix at t=tn+1. The vector D is given by
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where E is an index referred to a specific element, CFL is the local Courant number, C is a
constant specified by the user, ES  is a coefficient of pressure distribution.

3.       THE MULTI-TIME-STEP INTEGRATION PROCEDURE

   The multi-time-step integration procedure is implemented by computing the critical time
step for each element in the mesh and then dividing the elements into groups according to their
time step. Each element group can then be integrated with different time steps, but subject to
the following restrictions:
a)  the largest group time step must be an integer multiple of all time steps,
b)  if any node is shared by elements in two different integration groups, the time step of the

groups must be integer multiples of one another.
In this work the first restriction has been satisfied by requiring that all group time steps be
integer multiplies of each other. This constrain allows elements to be assigned to groups
according to their critical time steps and not to their physical proximity.
   Time steps ∆tN and ∆tG are assigned to nodes and elements groups, respectively, at the
beginning of the solution. The master time step ∆tmaster is set to the largest element group time
step and is used to determine when a cycle has been completed.
   In order to assign nodal and element group time steps, the time step of each element is
calculated with expression (9). These time steps are then converted to an integer multiple of
the smallest element time step. The integer multiples are then adjusted to satisfy the restriction
that all time steps must be integer multiples of one another.
    The time step for each node is computed considering the smaller time step of all the
elements connected to the node. After all ∆tN are computed, each element time step is
determined considering the smallest time step of all the nodes of this element. Thus, it is
possible to be sure that any node belongs to an element with a larger time step. Then, elements
and nodes are separated in groups according to their time steps.
   In addition to time steps, a clock is assigned to each nodal and element groups. These
clocks, when compared to the current time, indicate when a node group or a element group is
ready to be updated. At the beginning of each subcycle, the nodal and element group clocks



are advanced for those nodes and elements groups which were updated in the previous
subcycle (by design, all nodes and elements groups are updated in the first subcycle).
   After the first subcycle, element groups whose clock is behind the current time, i.e.

Gt time≤  (where tG is the element group clock and time is the current time) will be updated.
After all elements which satisfy expression last condition have been updated, the nodal loop is
executed. Each node whose clock is behind the current time, i.e. Nt time≤  (where tN is the
nodal clock) will be updated.
   Figure 1 shows the advance in time of each group of elements and nodes along a subcycle
when seven groups with its respective time steps (∆t, 2∆t, 4∆t, 8∆t, 16∆t, 32∆t, 64∆t) are
adopted. In this case a cycle is finished after 64∆t. It is observed, for example, as when
time=25∆t, only the groups 1 to 4 (with ∆t, 2∆t, 4∆t and 8∆t respectively) are updated.
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Figure 1 - Updating of nodes and element groups for each subcycle.

    When a element is updated, values of the variables at the nodes connected to this element
are necessary. But as these nodes may have time step that are different of the element time
interval, a linear interpolation is carried out in order to get all the variables values at the same
time in the moment where the updating is performed.
   The subcycling procedure continues until all nodes and element groups have been updated
to the master time. After the final subcycle all nodal variables have been updated to the same
point in time. In this instant the cycle is completed and before a new cycle is initiated, element
and nodes groups are evaluated again. Only elements and nodes with a critical time step
smaller than the current time interval are resorted. An outline of the multi-time-step procedure
is given bellow
1.  Initial conditions V(0) and x(0) are given.
2.  Initialize nodal and element group clocks (tG=0 for all element groups; tN=0 for all nodes;

time=0).
3.  Compute ∆t for each element using expression (9).
4.  Separate elements and nodes in groups according with the time step.
5.  If the first subcycle will be computed, resort elements (if required) and update all nodal and

element group clocks; update time (time=∆t).
6.  For the subcycle n (with n>1), update nodal clocks if tN<time and update element groups

clocks if tG<time; update time.
7.  Loop on elements to be updated

 (a) Compute E
n+1/2V  with expression (7).

(b) Compute the terms of the Eq. (8) at element level.
8.  For nodes belowing to groups to be updated



(a) Compute the conservation variables n+1V  at t=tn+1 using an iterative process, after
assembling (8) and prescribing boundary conditions.
(b) Compute the smoothed conservation variables with expression (10).
(c) Compute the dependent variables pn+1 and Tn+1.

9.  Interpolate linearly the variables of the nodes updated in this subcycle.
10.  If time<tmaster, select nodal and element groups which will be updated in the next subcycle;

for the nodes of these nodal groups reconstruct the values of the interpolated variables and
go to step 6.

11.  If t<tfinal  then go to step 5, else print results and the process is finished.

   Figure 2 illustrates the subcycling procedure for three element groups. Time is represented
by the vertical axis. The nodal time is represented by black circles and white circles represent
the time where the nodal variables are interpolated. The influences of other nodes in the
variables computation of a particular node are indicated with arrows.
   In the first subcycle, the current time is t, and all nodal and element groups are updated.
Nodes 1, 2 and 3 are updated to t+∆t; nodes 4 and 5 are updated to t+2∆t and nodes 6 and 7
to t+4∆t. In the second subcycle, the current time is t+∆t; so, only nodal and element groups
with step ∆t can be updated (nodes 1, 2, 3 and elements 1, 2, 3). It is observed that in this
subcycle node 3 receives the influence of the interpolated values of the variables of node 4. In
the third subcycle, the current time is t+2∆t, and nodes 1 to 5 are updated. It can be observed
that after this updating the cycle is finished for nodal groups with step 2∆t and step 4∆t (this
last nodal group needs only the first updating to finish the cycle). In the fourth and last
subcycle, only nodal and element groups with step ∆t are updated, finishing the cycle.

Figure 2 - Multi-time-step scheme for three element groups.

4.       EXAMPLE

   The supersonic flow (with Mach = 8,15) of a compressible non viscous fluid around a
sphere is analyzed. A mixed structured-unstructured mesh with 52732 tetrahedrical elements
and 11086 nodes is used. In Figure 3, a general view and details of the frontal region of the
sphere are shown. In the planes of symmetry and in the body surface the normal component of



the velocity is supressed. Therefore, the velocity vector is tangent to the surface of the sphere.
At the far-field, the values for the specific mass,  the velocity vector and the total specific
energy are: 4,1==∞ ρρρ ref  ; ( )0015,8==∞ crefvv

&
&  ; 997,342 ==∞ crefεε  ;  where ∞ρ ,

∞
&

v , ∞ε  are dimensionless quantities and refρ , refc  are references values of the specific mass

and the speed of sound propagation, respectively. min ref reft c x∆ = −6 10 5
x  is adopted for the

smaller dimensionless time interval (with xref being a reference length).

 (a) (b) 

Figure 3 - Finite element mesh. (a) General view; (b) Detail of the frontal region.

The finite element mesh is divided into seven groups with time steps equal to ∆t, 2∆t, 4∆t,
8∆t, 16∆t, 32∆t and 64∆t. Although it is possible to divide the domain in more than 7 groups,
the suggestion given by Belytschko and Gilbertsen (1992), based in numerical experiments
obtained in applications to structural dynamics problems, is adopted.

Number of elements and nodes for each group are presented in Table 1.

Table 1 - Number of elements and nodes for each group

GROUP STEP NUM. OF ELEM.. NUM. OF NODES
1 ∆t 194 8
2 2∆t 1522 138
3 4∆t 4504 726
4 8∆t 8644 1768
5 16∆t 13068 2645
6 32∆t 11086 2519
7 64∆t 13714 3282

   It is observed that great computational savings may be obtained using the multi-time-step
integration scheme in cases such as the example presented in this work, where the variations of
the elements size and properties over the finite element domain are very important.
    The maximum theoretical value of this computational saving (speed-up) can be computed
as follows (Belytschko & Gilbertsen, 1992):
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where tns and ts are the processing time required to solve the problem with an uniform time step
and with a variable time step in space and time, respectively. NSUB is the number of subcycles
and PUESi is the percentage of elements which are updated in the subcycle i.
     For the example presented in this work, the values of the theoretical computational saving,
obtained from expression (12), is 11,62 . However, comparing the CPU time of both cases
(with variable time steps and with an uniform time step) the real reduction in processing time is
about 9,22 times. The main reasons of this difference are: (a) the operations to control groups
of elements and nodes increase the processing time, (b) the performance decreases because
some difficulties arise to vectorize the subroutines that define the different groups of elements
and nodes, and due to loops executed only for these groups which can be updated at a given
instant, introducing indirect adressing (in this case the performance reduction, measured in
Mflops, is about 23%).
    In Figure 4, results for the specific mass and for the pressure are presented when the
smaller time step is taken uniformely for the whole domain, and are very similar to that
obtained by Argyris et al. (1989).
    In Figure 5, results for the specific mass and the pressure are presented when the multi-
time-step integration scheme is used. In order to compare results obtained in Figures 4 and 5,
the fields with the percentage of differences between the values obtained with both schemes are
shown in Figure 6.
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Figure 4 - Distribution of the specific mass (a) and pressure (b) when a constant time step is
used.
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Figure 5 - Distribution of the specific mass (a) and pressure (b) when the multi-time-step
scheme is used.
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Figure 6 - Fields with the percentage of differences between results obtained in Figure 4 and
Figure 5 for specific mass (a) and pressure (b).

Small differences less then 10% are found in pratically the whole finite element domain,
although some few isolated nodes, close to the stagnation region, present important differences
between the solution with an uniform time step and calculations using subcycles with different
time intervals for the several element and node groups.

Results presented in Figure 6 are obtained redefining the groups each 10 complete cycles.
These results are improved with respect to those obtained defining the groups only once, at the
beggining of the process, without taking into account modifications of some properties. In the
first case the algorithm to define the different groups requires 1.76% of the total process time,



while in the second case only 0.14% of the total process time is used to define groups of
elements and nodes.

5.       CONCLUSIONS

It was shown that important computational saving may be obtained if multi-time-step
integrations techniques are used, specially for problems where size and properties of the
elements vary in space and time.
    Although in the example presented in this work the processing time is reduced 9.22 times
(with a decrease of 23% in the performance, measured in Mflops) when the multi-time-step
technique is used, differences can be observed in zones near the shock line (with some peaks
concentrated in small regions). Probably these shortcomings could be overcome if time steps to
define element groups would be controlled by indicators in order to detect important physical
phenomena, applying techniques very similar to those used in the refinement procedure when
adaptive meshes are employed. This aspect will be subject of future works.
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